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Summary 

The mathematics relating to a spiral bounded by two circles has been 
developed and then applied to the spiral-wound nickel-cadmium cell. Given 
the input parameters, internal can diameter, component thicknesses and 
mandrel radius the maximum length of each component may be calculated 
for 16 different variations. 

1. Introduction 

A coil pack in an electrochemical cell is usually wound on a cylindrical 
mandrel and fits into a can with circular cross-section. A section normal to 
the axis of either the mandrel or the can therefore shows each component 
following the locus of a spiral. In order to maximize cell capacity the gap 
between the spiral-wound pack and the can should, as far as possible, be 
filled with active material by overlapping the electrodes. 

The relevant mathematics of a spiral bounded by two circles is 
presented in this paper. This is then applied to the coil pack of the nickel- 
cadmium cell so that electrode overlap and maximum component lengths 
may be determined. 

2. General mathematics 

The equation for a spiral (Fig. 1) as given by Marincic [l] is: 

P” =r+?Zt (1) 

pn is the distance of the spiral from the centre. The spiral originates on the 
circumference of a circle radius r and moves out a distance t for each turn; 
n is the number of turns. The length of the spiral (L) is given by [l] : 
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Fig. 1. Geometry of the spiral. 

L = n(n2t + 2m) (2) 

Marincic [l] states that the minimal diameter (D,) of the circle containing 
the spiral is given by: 

D, =P,, + P(n -0.5) (3) 

However, it is shown in Fig. 2 that this is not strictly correct. The diameter 
given by eqn. (3) is shown as AB. The true minimum diameter (Dt) is shown 
as AC. Let the number of turns to C and A be n’ and n respectively. Angles 
LOAC and LACO are shown in Fig. 2 as E and 0 respectively. It is shown in 
the Appendix that: 

tanp = t/211(?. + n’t) (4) 

Using eqn. (1) : 

OP = (r + n’t) sin 0 = (r + nt) sin E 

Also 

n -rz’ = {n -(e +‘fl)}/2n 

Rearranging eqn. (4) : 

(5) 

(6) 
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CIRCLE OF t4INIt.W DlAMETER 
ENVELOPING SPIRAL 

Fig. 2. Envelopment of a spiral by a circle. E is a point on the spiral. Straight lines OE and 
DE intersect the enveloping circle at points J and F respectively. 

n’ = 1 r 

2ntanp -t 

From eqn. (5) : 

E = sin-l 
(r + n’t) sin p 

(r + nt) 

(7) 

(8) 

From eqn. (6): 

n - l/2 + (f + 0)/2x 

n’ 
-l=O (9) 

Equations (7) - (9) were solved by an iterative method using a Texas SR-52 
programmable calculator. For particular values of n, r and t a value was 
assumed for 0 and n’ calculated using eqn. (7). Then e was evaluated using 
eqn. (8) and hence the 1.h.s. of eqn. (9) was computed. P was adjusted until 
the 1.h.s. of eqn. (9) was very small. The true value for the minimum 
diameter of the enveloping circle (Dt) was then calculated according to 
eqn. (10) and also the fractional error (Dt/Dc - 1) made in using eqn. (3): 

D, = AP + PC = (r + n’t) COSB + (r + nt) COSE (10) 

Values obtained when {n - l/2 + (E + fi)/2n)n’ - 1 < lo-’ 
presented in Table 1. The maximum error resulting from the use of eqnart3) 
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TABLE1 

Computationsofthe error resulting from the use ofeqn.(3) 

n tlr 

0.1 0.3 1 3 10 

1 n’ 0.505 0.512 0.529 0.547 0.560 
Wr 2.150 2.452 3.515 6.572 17.31 
6 0.83 0.87 2.10 2.37 4.54 5.94 10.25 6.75 13.56 8.09 

(Dt/D, - 1) 1.1 x 10 _4 7.6 x lo-* 4.2 x 1O-3 1.1 x 1o-2 1.8 x 1o-2 

3 n’ 2.504 2.508 2.514 2.516 2.518 
Dtlr 2.550 3.651 7.507 18.525 57.09 

; 0.73 0.70 1.44 1.56 2.28 2.59 2.73 3.20 2.94 3.48 
VW’, - 1) 7.8 x10+ 3.4 x lo-* 9.0 x lo-* 1.3 x 1o-3 1.6 x 1O-3 

10 n' 9.503 9.504 9.505 9.505 9.505 
Dtlr 3.950 7.851 21.502 60.51 197.0 

0.46 0.68 0.83 0.88 0.90 
0.47 0.71 0.87 0.93 0.95 

(DtlDc- 1) 3.2 x~O-~ 7.4 x lo+ 1.1 x lo-* 1.2 x lo-* 1.3 x lo-* 

is 1.8% for n = 1 and t/r = 10 which is an extreme case. In the nickel- 
cadmium cell typical values are rr = 7 and t/r = 0.5 for which the calculated 
error in using eqn. (3) is <0.02%. Equation (3) is therefore an extremely 
close approximation and wiII be used subsequently for the calculation of n. 

It can be seen in Table 1 that E and /I are usually small and hence the 
approximation /3 = sin 0 = tan 0, E = sin E for angles in radians may be made 
to allow eqns. (4) - (6) to be solved. Equations (4) and (5) then become: 

p = t/27r(r + n’t) 

(r + n’t)p = (r + nt)e 

(11) 

(12) 

Equating (r + n’t)p in eqns. (11) and (12): 

E = t/27r(r + nt) (13) 

Substituting for e and p from eqns. (11) and (13) into eqn. (6) and writing 
2n(n - l/2) + t/2n(r + nt) = K leads to: 

47r2t(n’)2 + (4n2r - 2nKt)n’ -(t + 2nKr) = 0 (14) 

This is a quadratic equation in rz’. Hence given II, r and t, n’ may be calcu- 
lated from eqn. (14) and /3 and e may be determined from eqns. (11) 
and (13). 
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3. Distances between the spiral and the outer circle 

3.1. Theory 
The required distances EF and EJ for the determination of possible 

electrode overlap are shown in Fig. 2. The centre of the enveloping circle is 
D. The essential parts of Fig. 2 required for a geometric analysis are shown in 
Fig. 3. It should be noted that OC = ~~1, OA = P,, and JD = CD = Dt/2. 

The angIes X, /3, e, (Y, 8 and 7 are shown in Fig. 3 and ah other angles 
may be expressed in terms of these six. It can be seen using eqn. (1) that: 

OE = r + {(n - 1) + (h --a)/2n}t (15) 

Furthermore 

OG=ODcos(h--8) (13) 

GE = OD sin (h -e)cot(--h +(Y +E +y) (17) 

But OE = OG + GE. Therefore from eqns. (15) - (17): 

r + {(n - 1) + (h - cu)/2n)t = OD {cos(h - 0) + sin (X - 0) cot (-A + 

e +e +7)) (18) 

Fig. 3. The essential parts of Fig. 2 for a mathematical analysis. 
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OH=p,*sin@=ODsin(a!+e--8) 

OD = (p,~ sin b)/sin(a + E - 13) 

But CH + HD = Dt/2 and therefore 

Pn’ cos p + (p,p sin p) cot (c + E -e) = Dt/2 

e=a+E--tan-l P”’ sin P 
D&2 - pn’ cos /3 

Also 

ED = OD sin (h -@/sin (-h + OL + E + y) 

Next an expression for OJ will be derived: 

LOJD = sin-’ 
OD sin (h - 0) 

JD 

But OJ = OG + GJ and therefore: 

OJ=ODcos(X--8)+%cos sin-l 
I 

OD sin@ -0) 

W2 

(1% 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

The above equations then allow the determination of the required quantities 
EF and EJ for given values of D,, r, t and y as follows: (i) calculate n using 
eqns. (1) and (3); (ii) calculate n’ by solving eqn. (14); (iii) calculate 0 and E 
using eqns. (11) and (13); (iv) calculate Dt using eqn. (10); (v) calculate a 
from the decimal part of n; (vi) calculate 0 using eqns. (22) and (1); 
(vii) calculate OD using eqns. (20) and (1); (viii) use an iterative method for 
solving eqn. (18) i.e. insert a X value and calculate the 1.h.s. and r.h.s. of 
eqn. (18). Adjust h until (1.h.s. - r.h.s.) is very small; (ix) calculate EF = 
Dt/2 - ED using eqn. (23); (x) calculate EJ = OJ - OE using eqns. (25) 
and (15). Steps (i) - (x) can be performed on a programmable calculator. In 
all the calculations which were done the more positive root of eqn. (14) was 
the correct one and hence the other root may be ignored. 

3.2. Results 
Calculated values of A - CY, EF/t and EJ/t are shown in Table 2 for 

values of Dt/t from 2.34 - 43.8 and y from 0 - 180”. 
A plot of EJ/t us. h - (Y is shown in Fig. 4. Little dependence on DJt 

is indicated. A linear regression analysis was performed on the data 0” < 
h - (Y < 121” resulting in the equation (for angles in degrees): 

EJ/t = 1.0027 - O.O07078(h - CK) (26) 

The coefficient of determination was 0.998 indicating that the points 
correlate well with the straight line in the range covered. The line given by 
eqn. (26) is shown broken in Fig. 4. 
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TABLE2 

The distances EF and EJ between the spiral and the outer circle(anglesarein degrees) 

Dtlt Y h-a EFlt EJ/t D,lt Y h--a EFIt EJ/t 

2.3437 0 
30 
_ 

60 
90 
120 
150 
180 

2.6726 0 
- 

30 
60 
90 
120 
150 
180 

4.0128 0 
_ 

30 
60 
90 
120 
150 
180 

_ 1.08398 - 7.8879 
- 0.97471 - 
0 - 1 
32.78 0.73210 0.78027 
74.63 0.43990 0.46023 
117.09 0.19358 0.19576 
157.96 0.04434 0.04435 
196.01 0 0 

1.04640 - 20.057 
0 - 1 
11.12 0.90607 0.93321 
41.91 0.68133 0.71081 
78.81 0.41684 0.43966 
118.04 0.18656 0.18803 
156.99 0.04340 0.04341 
193.96 0 0 

0 - 1.00285 - 
_ 0 _ 1 
30 27.62 0.81839 0.82044 
60 57.20 0.59106 0.59296 
90 88.11 0.35803 0.35885 
120 120.04 0.16257 0.16268 
150 152.43 0.03919 0.03919 
180 184.64 0 0 

0 - 1.00040 - 
_ 0 - 1 
30 29.29 0.80834 0.80863 
60 59.10 0.57759 0.57785 
90 89.40 0.34700 0.34712 
120 120.08 0.15706 0.15708 
150 150.97 0.03800 0.03799 
180 181.82 0 0 

1.01387 0 - _ 43.751 - 1.00008 
0 - 1 _ 0 - 1 
22.78 0.84505 0.85456 30 29.70 0.80562 0.80568 
52.24 0.62216 0.63136 60 59.62 0.57361 0.57367 
84.83 0.38098 0.38500 90 89.75 0.34358 0.34361 
119.46 0.17298 0.17349 120 120.05 0.15528 0.15529 
154.69 0.04122 0.04122 150 150.45 0.03759 0.03759 
189.19 0 0 180 180.83 0 0 

Plots of EF/t us. DJt are shown in Fig. 5 for values of y from 0 - 150”. 
A considerable dependence on DJt is shown in this case. In order to deter- 
mine EF/t at low DJt values it was found convenient to plot EF/t us. (DJt - 
2))’ as shown in Fig. 6. This resulted in smooth curves from which inter- 
mediate points could be ascertained more precisely than from plots of 
Dt/t us. EF/t (Fig. 5). Using the family of curves of the type in Fig. 6 for 
y = 0 - 150” the curves shown in Fig. 7 were plotted of EF/t us. -y for D&t 
values of 2.35,3.00 and 40.0. Each curve approximates to a straight line in 
the range 30 < y < 120. Linear regression analyses were performed on the 
data in Table 2 over this range. The following equation may be written: 

EF/t=Ar+B(30<r<120) (27) 

A and B values are listed in Table 3. These values are plotted us. (DJt - 2)-l 
in Fig. 8. As can be seen the points for A us. (DJt - 2)-l lie close to a 
straight line. A linear regression analysis revealed the relationship: 

A = -0.000530(Dt/t - 2)-l - 0.00726 (23) 
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EJlt 

0.5- 

EFIt 

0.6 

OL A,. I 
iii_, , , , , , , ,I 

2 4 6 8 10 12 14 16 18 

at/t 

Fig. 4. EJ/t vs. A--a. D,/t values: n , 2.34;0, 2.67;0, 4.01;A, 7.89;0, 20.1; v,43.8. 
Broken line represents the best straight line through the points 0” < x - a! < 121”. 

Fig. 5. EFIt vs. DJt at the various values of y indicated on the curves. 

0.7L - 

on- 

0.70- 

0.68- 

EFlt 

I 
0 1 2 3 

Dt It -21-l 

EFI t 

0.5- 

O.L- 

0.3- 

0.2- 

O.l- 

0 30 60 90 120 150 180 
x Idegwsl 

Fig. 6. EF/t vs. (DJt - 2)-l for 7 = 60”. 

Fig. 7. EF/t vs. ‘y for the following D,/t values: -, 2.35; -- -, 3.00; -------, 40.0. 

Hence for Dt/t values in the range 2.34 - 43.8, A may be determined from 
eqn. (28) and B by graphical interpolation from Fig. 8 for substitution into 
eqn. (27), 
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TABLE 3 

Coefficients of eqn. (27) 

&It A (degree-‘) B 

2.3437 -0.00879 1.244 

2.6726 -0.00808 1.153 

4.0128 -0.00752 1.070 

7.8879 -0.00733 1.033 

20.057 -0.00728 1.019 

43.751 -0.00727 1.015 

Fig. 8. A and B us. (Dtlt - 2)-l. 

4. The spiral-wound construction 

The mandrel on which the pack is wound is usually split to allow the 
use of a single piece of separator (Fig. 9). The length of separator in the split 
of the mandrel has not been taken into account in the subsequent calcula- 
tions. Although a single piece of separator is generally used, it is treated here 
as two pieces, 1 and 2, with compressed thicknesses S r and 6 2 respectively 
making the analysis more general. 

/ 
SPLIT 

/ 

t&ATIVE ELECTFOX 

MANDREL SEPAIZATG? 

POSITIVE ELECTRODE 

Fig. 9. Winding the components onto a split mandrel. 

5. Cases with no electrode overlap at the inside or outside of the coil pack 

There are four basic cases corresponding to the positive or negative elec- 
trode starting at the centre and the positive or negative ending at the outside 
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v POSITIVE ELECTROOE 

- NEGATIVE ELECTRODE 

SEPARATOR 1 

- SEPARATDR 2 

Fig. 10. (a) Case 1: positive starts at centrc and negative ends outside. (b) Case 2: positive 
starts at centre and ends outside. (c) Case 3: negative starts at centre and positive ends 
outside. (d) Case 4: negative starts at centre and ends outside. 

of the pack. The can is the negative terminal and hence if the positive 
finishes at the outside it must be insulated from the can by a layer of 
separator. The four cases are shown in Fig. 10. 

Let the mandrel have a radius rc and the positive, separator 1, negative 
and separator 2 have thicknesses 6,, 6r, SN and 6s and lengths L,, L1, L, 
and L2 respectively. In this and subsequent calculations it will be assumed 
that the length of a flat piece of electrode or separator is equal to the length 
of a plane through the centre of the component when it is bent around the 
mandrel, i.e. it compresses at the inside and stretches at the outside. Using 
eqn. (2) for the length of a spiral the following relationships follow: 

L, = T [(n - a)‘t + 2{r, + 6,/2 + d(S, + &J}(n -a)] (29) 

L, = n[(n -u)‘t + 2(r, + 6, + &i/2 + d(6 N + &))(n -a)] (30) 
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TABLE 4 

Values of the coefficients in eqns. (29) - (32), (34), (51), (53) - 
(55), (58) and (63) 

Constant Case 

1 2 3 4 

z 0 0 0 0 0 1 1 1 
h 0 1 0 0 
k 1 1 0 1 

L, = n[(n -h)? + 2{r, + (1 - d)(6, + 6,) + 6,/2}(n -h)] (31) 

L, = ~[(n - k)2t + 2{r, + (1 - d)(6, + 6,) + 6, + Fj2/2}(n -k)] (32) 

Values for the coefficients a, d, h and k are given in Table 4. Also 

t = 6, + 6, + 6N + 62 (33) 

The number of turns n of the component at the outside of the coil pack can 
be determined by application of eqns. (1) and (3) : 

20, -4(r,+(l--a)(&, +6,) +(l--)hN +(1-k)&,} + t 
n= 

4t 
(34) 

6. Cases with electrode overlap at the centre of the coil pack 

It is apparent in Fig. 10 that there is void space between the mandrel 
and the coil in which further positive or negative electrode could be in- 
corporated. 

6.1. Cases 1 and 2 
The two possibilities for filling the void space are shown in Fig. 11 de- 

pending upon whether the positive or negative electrode protrudes into the 
void space. 

Positive filling void space 
The distance between the mandrel and the positive electrode dl can be 

determined using eqn. (1) : 

4 = ot/2n (35) 

u is the angle shown in Fig. 11, 
Let the positive protrude into the void space making an angle J/ with the 

negative. Then the maximum protrusion $, is given by (Fig. 11): 
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I dl 

Id lb1 

Fig. 11. Filling of void at centre of pack (a) by positive and (b) by negative. Key as for 
Fig. 10. 

J/m = (2n --%I) (36) 

where (using eqn. 35): 

62 + 6, + 61 = Om t/2n 

Eliminating urn from eqns. (36) and (37): 

+, = 2n{l- (6s + 6, + 61)/t) 

This is equivalent to a length of positive LI, where 

Lb = (r, + &/2)9, 

(37) 

(38) 

i.e. LI, = 2n(r, + 6,/2){1 - (6s + 6, + &)/t} (39) 

Similarly the corresponding length of separator 1 is 

(L;), = 2n(r, + 6, + &r/2)(1 - (6, + F, + &)/t} (46) 

Separator 2 protrudes into the void space but continues to follow a spiral 
with $, corresponding to the n value n, (n, has a negative value). 

n, = -lJJ27T = (6s + 6, + 6,)/t - 1 (41) 

This corresponds to a length of separator 2 given by: 

(Lh), = -n[{(82 + 6, + iQ/t - l}? 

+ 2(r, + 6, + S1 + 6N + 6s/2)((Ss + 6, + &)/t - l}] (42) 



323 

Negative filling the void space 
Let the negative protrude into the void space with a maximum length 

Lh. The equation equivalent to eqn. (38) is now: 

G, = 2x0 - (6, + M/t) (43) 

This leads to (cf. eqn. 42): 

L;, = -n[(@hl + 6,)/t - 11% + 2(F, + 6, + 61 + 6,/2)(&v + 62)/t - l}] 

(44) 

Similarly the corresponding length of separator 2 is: 

(L& = -77[{(6~ + 62)/t - 1j2t + 2(F, + 6, + 61 + 6~ + &z/2) 

i(S, + s2w - 1)Il (45) 

6.2. Cases 3 and 4 
The treatment is as in the above section except that the positive and 

separator 1 are interchanged with the negative and separator 2 respectively. 

Positive filling void space 
The relevant previous equations are (44) and (45): 

LI, = -??[((6, + 6,)/t - 1)2t + 2(F, + 6~ + 62 + 6,/2){(6, + 6,)/t - I))] 

(46) 

(L;), = -7r[{(6, + 61)/t - 1}2t 

+ 2(r, + 6N + 62 + 6, + b/2)1(& + &d/t - 1))1 (47) 

Negative filling the void space 
The relevant previous equations are (39), (40) and (42): 

L;, = 2n(F, + 6N/2){1 - (6, + 6N + 62)/t} 

(L& = 2n(F, + 8N + 62/2){1 - (61 + 8N + 62)/t} 

(L;)N = - 71 [{(a 1 + 6N + 6 2)/t - 1}2t 

+ 2(F, + 6N + 62 + 6, + 6,/2){(61 + 6N + 6,)/t - I)] 

(48) 

(49) 

(50) 

7. Cases with electrode overlap at the outside of the coil pack 

Referring to Fig. 10 it can be seen that there is void space between the 
coil and the can in which further positive or negative electrode could be 
incorporated. 
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(c) (d) 

Fig. 12. Cases 1 and 4. Filling of void between pack and can (a) by positive and (b) by 
negative. Cases 2 and 3. Filling of void between pack and can (c) by positive and (d) by 
negative. Key as for Fig. 10. 

7.1. Cases 1 a n d  4 
The two possibilities for filling the outer  void space are shown in 

Figs. 12(a) and 12(b). 
In the analysis presented earlier (eqns. 15 - 25) r may be expressed in 

terms of  rc, 5p, 51, 5N and 52 for the negative electrode: 

r = rc + (1 - - a ) ( S p  + 51) + 5N/2 (51) 

Pos i t i ve  f i l l ing vo id  space  
The gap between the pack and the can which may be filled by  separa- 

tors 1 and 2 plus the positive electrode is equivalent to EJ in Fig. 2. The 
maximum penetration of  the positive into the void space (~,m -- a) results 
when: 

EJ = 51 + 5p + 5 2 (X = ~m) (52) 

~'m -- a may be determined by solution of eqns. (52) and (26). The maxi- 
mum length of overlap by the positive (L~) can be calculated using eqn. (2): 
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LI: = (A, - (Y){r, + 6,/2 - a(61 + 6,) + nt + (A, - cw)t/4n} 

Similarly the corresponding length of separator 1 is L; where: 

L; = (A, - a[)(r, + 6, + Fj1/2 - a(& + 6,) + nt + (A, - a)t/4n} 

And the corresponding length of separator 2 is Lg where: 

Li = (A, -a)(rc - &/2 -a@, + 6,) + nt + (A, - a)t/4n} 

(53) 

(54) 

(55) 

Negative filling void space 
The relevant gap between the pack and the can which may be filled 

with negative electrode is EF in Fig. 2. The maximum penetration of the 
negative into the void space (Ye) is given by: 

EF=hN (Y = Ym) (56) 

-ym may be determined by solution of eqns. (56) and (27). The maximum 
overlap of the negative L& can be calculated as 

L;; = D,y,/2 (57) 

Note that Dt here is less than D, by an amount approximately equal to the 
negative thickness because Dt is calculated using eqn. (10) where r is given 
by eqn. (51), i.e. calculations are based on a plane through the centre of the 
negative electrode. 

7.2. Cases 2 and 3 
The two possibilities for filling the outer void space are shown in Figs. 

12(c) and 12(d). 
In the earlier analysis (eqns. 15 - 25) r may be expressed as follows: 

r = r, + d(6, + 64 + 6, + h1/2 (53) 

Positive filling void space 
The gap between the pack and the can which may be filled by separator 

1 plus the positive electrode is equivalent to EF in Fig. 2. The maximum 
penetration of the positive into the void space (ym) is given by: 

EF = 61 + 6, (Y = Ym) (59) 

Y,,, may be determined by solution of eqns. (59) and (27). The maximum 
overlap of the positive Lz can be calculated as: 

L; = (Dt - &I -h&J% (60) 

Similarly the corresponding length of separator 1 is L;’ where: 

L’; = Dt ym/2 (61) 
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Negative filling void space 
The relevant gap between the pack and the can which may be filled by 

the negative electrode is EJ in Fig. 2. The maximum penetration into the 
void space (h, -a) is given by: 

EJ = 6N 0 = &?I) (62) 

h, may be determined by solution of eqns. (62) and (26). The maximum 
overlap of the negative L& can be calculated using eqn. (2) as: 

L, = (A, - a){r, + hN/2 - h(6a + 6,) + nt + (A, - CY) t/477} (63) 

8. Calculation of total component lengths 

The steps used in the calculations were as follows: 
(i) Determine n using eqn. (34) for one of cases 1 - 4. 
(ii) Calculate L,, L,, LN and L2 using eqns. (29) - (32). 
(iii) As steps (ii) - (vii) of Section 3.1 using eqns. (51) and (58) for r. 
(iv) Calculate the partial component lengths Lb, (L;),, (L’,),, Lh, (L& 

and (L& using the equations in Section 6 for overlap at the centre of the 
coil pack. 

(v) Calculate the partial component lengths Li, L;, L{ and LL using 
the equations in Section 7 for overlap at the outside of the coil pack. 

(vi) The maximum total component lengths may be determined by 
adding up the calculated partial lengths as follows: 

(a) Positive filling void spaces at centre and outside of pack 

Lp =L,+Lb+LZ 

EN=LN 

L1 = L, + (L;), + L; 

E, = L‘J + (La), + L$ 

(b) Positive filling centre void space, negative filling void between pack 
and can 

zp =L,+LI, 

L,=LN+L;; 

Ll =L1+(G), 

L2 =L2 + (G), 

(c) Negative filling centre void space: positive filling void between pack 
and can 
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&=LN+L;v 

L, = L1 + (L& + L’; 

E2 = Lz + (L&J + Lz 

(d) Negative filling void spaces at the centre and outside of the pack 

lCP =L, 

&=LN+L;J+L;; 

L, = L, + (L& 

1, = Lz + (L&&J 

Conclusion 

Equations are presented from which the component lengths may be 
calculated for the four cases corresponding to the permutations of the two 
electrodes starting at the inside and ending at the outside. These result in 
gaps between the mandrel and the coil pack and the latter and the can which 
may be filled with active material for maximized cell capacity. This leads to 
four variations on the basic cases, resulting in 16 combinations altogether. 

The calculations may be readily performed on a programmable 
calculator or computer. 
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Nomenclature 

A B constants in eqn. (27), 
a, d, h, k see Table 4, 
D, specified internal can diameter containing coil pack, 
Dt minimum circle diameter containing spiral, 
EF, EJ see Fig. 2, 
K = 2n(n - l/2) + t/2n(r + nt), 
L length of spiral, 
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h L2, L,, LN 

Lb, G),, G), 

LiV, tL;)N 9 tL6)N 
L;, L’;, L; 

L;; 

n 

n’ 
r 
rC 
t 
a, Y, 0, h 
0 
Ym, (hl --a) 

length of separator 1, separator 2, positive, negative, 
with no overlap at centre or between pack. and can, 
length of positive protruding into the centre void space 
and the associated lengths of separators 1 and 2, 
as above but for negative, 
length of positive protruding into the void space be- 
tween pack and can and the associated lengths of separa- 
tors 1 and 2, 
length of negative protruding into the void space be- 
tween pack and can, 
maximum total length of separator 1, separator 2, 
positive, negative, 
total number of turns on spiral; number of turns of the 
component at the outside of the coil pack, 
number of turns to C (Fig. 2), 
radius of circle on which spiral originates, 
radius of mandrel on which coil is wound, 
distance by which spiral moves out during one turn, 
see Fig. 3, 
angle LACO (Fig. 2), 
angles corresponding to the maximum penetration of an 
electrode into void space between pack and can, 
angle LOAC (Fig. 2), 
thickness of positive, negative, 
compressed thickness of separator 1, 2, 
distance of spiral from centre after n turns. 

Appendix 

Derivation of eqn. (4) 
The relevant part of Fig. 2 is shown in Fig. 13. A line has been drawn 

making an angle Aq with OC intersecting the spiral at R. 

LTCS = LOCP = /3 (64) 

RO (65) 

OS = (r + n’t) set AQ (66) 

RS =RO-OS=r+ t-(r+n’t)secAg (67) 

SC = (r + n’t) tan A6 (68) 

Consider now the situation Aq + 0 only. Then eqn. (67) becomes: 
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SPIRAL 

I 

TANGENT TO SPIRAL 
AT FONT C 

Fig. 13. A section of the spiral required for the derivation of eqn. (4). 

Fig. 14. The segment RSC for AT -+ 0. 

RS = Aqt/2n (69) 

as set AQ = 1 + (a~)~/2 + higher order terms and eqn. (68) becomes: 

SC = (r + n’t)Aq (70) 

as tan Aq = AQ + higher order terms. The segment RSC in Fig. 13 may then 
be drawn as shown in Fig. 14. Clearly 

tan p = t/2n(r + n't) (4) 


